Respuesta :

Answer:

option C

(4,4)

Step-by-step explanation:

Given in the question an inequality

y ≤ x² - 3x + 2

(1,1)

when x = 1

y ≤ 1² - 3 + 2

y ≤ 0

1 ≤ 0

Rejected as 1 is greater than 0

(2,2)

when x = 2

y ≤ 2² - 3(2) + 2

y ≤ 0

2 ≤ 0

Rejected as 2 is grater than 0

(4,4)

when x = 4

y ≤ 4² - 3(4) + 2

y ≤ 6

4 ≤ 6

Accepted as 4 is lesser than 6

(3,3)

when x = 3

y ≤ 3² - 3(3) + 2

y ≤ 2

3 ≤ 2

Rejected as 3 is greater than 2

Answer:

The correct answer option is C. (4, 4).

Step-by-step explanation:

We are given the following equation and we are to determine whether which of the given point satisfies it:

[tex]y\leq x^2-3x+2[/tex]

So checking by substituting the points.

A. (2, 2):

[tex]y\leq x^2-3x+2[/tex] ---> [tex]2\leq 2^2-3(2)+2[/tex] ---> [tex]2\leq 0[/tex]

B. (1, 1):

[tex]y\leq x^2-3x+2[/tex] ---> [tex]1\leq 1^2-3(1)+2[/tex] ---> [tex]1\leq 0[/tex]

C. (4, 4):

[tex]y\leq x^2-3x+2[/tex] ---> [tex]4\leq 4^2-3(4)+2[/tex] ---> [tex]4\leq 6[/tex] - True

D. (3, 3):

[tex]y\leq x^2-3x+2[/tex] ---> [tex]3\leq 3^2-3(3)+2[/tex] ---> [tex]3\leq 2[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE