Select the point that satisfies the equation

Answer:
option C
(4,4)
Step-by-step explanation:
Given in the question an inequality
y ≤ x² - 3x + 2
(1,1)
when x = 1
y ≤ 1² - 3 + 2
y ≤ 0
1 ≤ 0
(2,2)
when x = 2
y ≤ 2² - 3(2) + 2
y ≤ 0
2 ≤ 0
(4,4)
when x = 4
y ≤ 4² - 3(4) + 2
y ≤ 6
4 ≤ 6
(3,3)
when x = 3
y ≤ 3² - 3(3) + 2
y ≤ 2
3 ≤ 2
Answer:
The correct answer option is C. (4, 4).
Step-by-step explanation:
We are given the following equation and we are to determine whether which of the given point satisfies it:
[tex]y\leq x^2-3x+2[/tex]
So checking by substituting the points.
A. (2, 2):
[tex]y\leq x^2-3x+2[/tex] ---> [tex]2\leq 2^2-3(2)+2[/tex] ---> [tex]2\leq 0[/tex]
B. (1, 1):
[tex]y\leq x^2-3x+2[/tex] ---> [tex]1\leq 1^2-3(1)+2[/tex] ---> [tex]1\leq 0[/tex]
C. (4, 4):
[tex]y\leq x^2-3x+2[/tex] ---> [tex]4\leq 4^2-3(4)+2[/tex] ---> [tex]4\leq 6[/tex] - True
D. (3, 3):
[tex]y\leq x^2-3x+2[/tex] ---> [tex]3\leq 3^2-3(3)+2[/tex] ---> [tex]3\leq 2[/tex]