whats the value of x

Answer:
[tex]x=4\ units[/tex]
Step-by-step explanation:
step 1
Find the length of JL
In the right triangle KLJ
[tex]sin(30\°)=\frac{JL}{8\sqrt{2}}[/tex]
[tex]sin(30\°)=\frac{1}{2}[/tex]
so
[tex]\frac{1}{2}=\frac{JL}{8\sqrt{2}}[/tex]
[tex]JL=4\sqrt{2}\ units[/tex]
step 2
Find the value of x
In the right triangle JLM
[tex]sin(45\°)=\frac{x}{4\sqrt{2}}[/tex]
[tex]sin(45\°)=\frac{\sqrt{2}}{2}[/tex]
so
[tex]\frac{\sqrt{2}}{2}=\frac{x}{4\sqrt{2}}[/tex]
[tex]x=4\ units[/tex]