Respuesta :

ANSWER

[tex]x=-i, x=i , x= - \sqrt{5} i, x= \sqrt{5} i[/tex]

EXPLANATION

The given quartic equation is

[tex] {x}^{4} + 6 {x}^{2} + 5 = 0[/tex]

We can rewrite this as:

[tex]({x}^{2} )^{2} + 6( {x}^{2} ) + 5 = 0[/tex]

Let

[tex]u = {x}^{2} [/tex]

Then,

[tex] {u}^{2} + 6 {u} + 5 = 0[/tex]

Factor to obtain:

[tex](u + 1)(u + 5) = 0[/tex]

[tex]u = - 1 \: or \: u = - 5[/tex]

This implies that,

[tex] {x}^{2} = - 1 \: or \: {x}^{2} = - 5[/tex]

[tex]{x}= \pm \: \sqrt{ - 1} \: or \: {x} = \pm \sqrt{ - 5} [/tex]

[tex]{x}= \pm \: i\: or \: {x} = \pm \sqrt{ 5} i[/tex]

[tex]x=-i, x=i , x= - \sqrt{5} i, x= \sqrt{5} i[/tex]

Answer:

x = ± i and x = ± i√5

Step-by-step explanation:

hope that helped! It should be answer B!

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE