Respuesta :

Answer:

The answer is [tex]L_{t}=0.5L_{0}[/tex] ⇒ answer (b)

Step-by-step explanation:

* Lets discuss the formula

- cosФ =[tex]\sqrt{\frac{L_{t}}{L_{0}}}[/tex]

- Now find [tex]L_{t}[/tex] in termas of cosФ and [tex]L_{0}[/tex]

* square the two sides

∴ cos²Ф = [tex]\frac{L_{t}}{L_{0}}[/tex]

* Multiply two sides by [tex]L_{0}[/tex]

∴ cos²Ф × [tex]L_{0}[/tex] = [tex]L_{t}[/tex]

∵ Ф = 45°

∴ [tex]L_{t}=cos^{2}45(L_{0})[/tex]

∵ cos45 = √2/2

∴ cos²Ф = (√2/2)² = 1/2 = 0.5

∴ [tex]L_{t}=0.5L_{0}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE