Respuesta :

frika

Answer:

B

Step-by-step explanation:

Use the Pythagorean theorem for the right triangle ABC:

[tex]AC^2+BC^2=AB^2,\\ \\AC^2=15^2-12^2,\\ \\AC^2=225-144,\\ \\AC^2=81,\\ \\AC=9\ cm.[/tex]

By the definition,

[tex]\cos A=\dfrac{\text{adjacent leg}}{\text{hypotenuse}}=\dfrac{AC}{AB}=\dfrac{9}{15}=\dfrac{3}{5},\\ \\\sin A=\dfrac{\text{opposite leg}}{\text{hypotenuse}}=\dfrac{BC}{AB}=\dfrac{12}{15}=\dfrac{4}{5},\\ \\\sec A=\dfrac{1}{\cos A}=\dfrac{1}{\frac{3}{5}}=\dfrac{5}{3},\\ \\\csc A=\dfrac{1}{\sin A}=\dfrac{1}{\frac{4}{5}}=\dfrac{5}{4},\\ \\\tan A=\dfrac{\text{opposite leg}}{\text{adjacent leg}}=\dfrac{BC}{AC}=\dfrac{12}{9}=\dfrac{4}{3},\\ \\\cot A=\dfrac{\text{adjacent leg}}{\text{opposite leg}}=\dfrac{AC}{BC}=\dfrac{9}{12}=\dfrac{3}{4}.\\ \\[/tex]

Answer:

The correct answer is option b

Step-by-step explanation:

From the figure we can see that,a right angled triangle.

ΔABC

To find side AC

AC = √(AB)² - (BC)² =√15² - 12² = √81

AC = 9

To find the trigonometric ratio

Sin A = BC/AB = 12/15 = 4/5

Cos A = AC/AB = 9/15 = 3/5

Tan A = BC/AC = 4/3

Cosec  A = 1/Sin A = 5/4

Sec A = 1/Cos A = 5/3

Cot A = 1/Tan A = 3/4

Therefore the correct answer is option b

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE