Respuesta :

Answer:

a. 40

Step-by-step explanation:

Given

[tex]g(x)=2x[/tex] and [tex]h(x)=x^2+4[/tex]

[tex](h\circ g)(x)=h(g(x))[/tex]

[tex](h\circ g)(x)=h(2x)[/tex]

We plug in 2x into  [tex]h(x)=x^2+4[/tex].

[tex](h\circ g)(x)=(2x)^2+4[/tex]

[tex](h\circ g)(x)=4x^2+4[/tex]

We now substitute x=-3.

[tex](h\circ g)(-3)=4(-3)^2+4[/tex]

[tex](h\circ g)(-3)=36+4=40[/tex]

The correct choice is A.

Hello!

The answer is: a. 40

Why?

We are working with composite functions, so, to find the correct option, first we need to follow the composite function process:

[tex](h\circ g)=h(g(x))[/tex]

So,

We are given the functions:

[tex]g(x)=2x\\\\h(x)=x^{2}+4[/tex]

So,

[tex](h\circ g)(x)=(2x)^{2}+4[/tex]

Then, evaluating with "x" equal to -3, we have:

[tex](h\circ g)(-3)=(2*-3)^{2}+4=(-6)^{2}+4=36+4=40[/tex]

So, the correct option is a. 40

Have a nice day!

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE