Respuesta :

Answer: Exterior

Step-by-step explanation:

Substitute the point (-2,4) into the equation of the circle [tex](x-5)^2+(y+3)^2=25[/tex].

Knowing that:

[tex]x=-2\\y=4[/tex]

Then:

[tex](x-5)^2+(y+3)^2=25\\(-2-5)^2+(4+3)^2=25\\(-7)^2+(7)^2=25\\98\neq25[/tex]

Therefore, as [tex]98\neq25[/tex] then the point is not on the circle.

If a point is in the interior of the circle , then:

[tex](x-5)^2+(y+3)^2<25[/tex]

[tex]98>25[/tex] Then the point (-2,4) is not in the interior of the circle.

If a point is in the exterior of the circle, then:

[tex](x-5)^2+(y+3)^2>25[/tex]

 [tex]98>25[/tex] Then the point (-2,4) is in the exterior of the circle.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE