Respuesta :

Answer:

  • Option 4. 8.5%

Explanation:

The half-life time of a radiactive isotope (radioisotope) is a constant value, meaning that the amount of the radioisotope that decays will be (1/2) raised to the number of half-lives passed.

Naming A₀ the initial amount to the radioisotope, you can build this table to find the amount left.

Number of half-lives           amount of radiosotope left

       0                                              A₀

       1                                               (1/2) × A₀

       2                                              (1/2)×(1/2)×A₀ = (1/2)² × A₀

       3                                              (1/2)³ ×A ₀

       4                                              (1/2)⁴ × A₀

       n                                              (1/2)ⁿ × A₀

Now calculate the number of half-lives the strontium-90 sample has passed after 100 years:

  • n = 100 years / 28.1 years ≈ 3.5587

Hence, the amount of strontium-90 is:

[tex](\frac{1}{2})^{3.5587}A_0=0.08486A_0[/tex]

In percent, that is:

[tex](0.08486A_0/A_0).100=8.486%[/tex]

Rounding to two significant figures, that is 8.5%.

Conclusion: The percent of strontium-90 left after 100 yeaers is 8.5% (choice number 4).

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE