Zoe draws ΔABC on the coordinate plane. What is the approximate perimeter of ΔABC
to the nearest hundredth?
A. 8.47 units
B. 12 units
C. 12.94 units
D. 15.31 units

Zoe draws ΔABC on the coordinate plane What is the approximate perimeter of ΔABC to the nearest hundredth A 847 units B 12 units C 1294 units D 1531 units class=

Respuesta :

B. 12 units because when you add the lengths together you get 12

Answer:

Option C is correct.

Step-by-step explanation:

Given: Δ ABC on coordinate plane.

From Coordinate plane, Coordinates are A( 1 , 1 ) , B( 3 , 5 ) and C( 5 , 1 )

We need to find Approximate perimeter of the triangle.

we use the distance formula of two point [tex](x_1,y_1)\:and\:(x_2,y_2)[/tex]

[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

So,

[tex]AB=\sqrt{(3-1)^2+(5-1)^2}=\sqrt{(2)^2+(4)^2}=\sqrt{4+16}=\sqrt{20}=4.47\:(approx.)[/tex]

[tex]CB=\sqrt{(5-3)^2+(1-5)^2}=\sqrt{(2)^2+(-4)^2}=\sqrt{4+16}=\sqrt{20}=4.47\:(approx.)[/tex]

[tex]AC=\sqrt{(5-1)^2+(1-1)^2}=\sqrt{(4)^2+(0)^2}=\sqrt{16}=4[/tex]

Thus, Perimeter = AB + AC + CB = 4.47 + 4.47 + 4 = 12.94 units

Therefore, Option C is correct.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE