Respuesta :

ANSWER

[tex]|v| = 2 \sqrt{10} [/tex]

EXPLANATION

Vector v that has an initial point of (1,3) and a terminal point of (7,1)

To find vector v, subtract the terminal position vector from the initial position vector.

[tex]v = \binom{7}{1} - \binom{1}{3} [/tex]

[tex]v = \binom{7 - 1}{1 - 3} [/tex]

[tex]v = \binom{6}{ - 2} [/tex]

The magnitude of the vector is given by:

[tex] |v| = \sqrt{ {x}^{2} + {y}^{2} } [/tex]

[tex]|v| = \sqrt{ {6}^{2} + {( - 2)}^{2} } [/tex]

[tex]|v| = \sqrt{ 36+ 4 } [/tex]

[tex]|v| = \sqrt{40} = 2 \sqrt{10} [/tex]

1. B. v=(6,-2)

2. A. ||V||=2sqrt10

3. D. A(6,-4) and B(3,1)

4. A. 6,500 ft, no discount

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE