A) [tex]5.88\cdot 10^{23}J[/tex]
The kinetic energy of an object is given by
[tex]K=\frac{1}{2}mv^2[/tex]
where
m is the mass of the object
v is the speed of the object
For the asteroid in the problem, we have
[tex]d=2500 kg/m^3[/tex] is the density
[tex]r=\frac{10 km}{2}=5 km=5000 m[/tex] is the radius
We can find its volume:
[tex]V=\frac{4}{3}\pi r^3=\frac{4}{3}\pi (5000 m)^3=5.23\cdot 10^{11} m^3[/tex]
And so its mass
[tex]m=d V =(2500 kg/m^3)(5.23\cdot 10^{11} m^3)=1.31\cdot 10^{15} kg[/tex]
while its speed is
[tex]v=30 km/s=30,000 m/s[/tex]
So its kinetic energy is
[tex]K=\frac{1}{2}(1.31\cdot 10^{15} kg)(30,000 m/s)^2=5.88\cdot 10^{23}J[/tex]
so, this is the energy released in the impact of the asteroid.
B) [tex]1.4\cdot 10^{11} kton[/tex]
The conversion factor is
[tex]1 ton = 4.2 GJ = 4.2 \cdot 10^9 J\\1 kton = 4.2 \cdot 10^{12}J[/tex]
So the energy released in kilotons will be
[tex]E=\frac{5.88\cdot 10^{23} J}{4.2\cdot 10^{12} J}=1.4\cdot 10^{11} kton[/tex]