Respuesta :
Answer:
ln (27 x²)
Step-by-step explanation:
Given in the question an expression
3 ln 3 + 2 ln x
Step1
Apply power rule
[tex]mlnx=lnx^{m}[/tex]
ln 3³ + ln x²
Step2
Apply multiplication rule
[tex]lnx + lny=ln(xy)[/tex]
ln (3³ . x²)
3³ = 27
so
ln (27x²)
ANSWER
[tex]3 ln(3) + 2ln(x) = ln(27 {x}^{2} ) [/tex]
EXPLANATION
The given logarithmic expression is
[tex]3 ln(3) + 2ln(x) [/tex]
Recall and apply the power rule:
[tex]k \: ln(a) = ln( {a}^{k} ) [/tex]
[tex]3 ln(3) + 2ln(x) = ln( {3}^{3} ) + ln( {x}^{2} ) [/tex]
[tex]3 ln(3) + 2ln(x) = ln(27) + ln( {x}^{2} ) [/tex]
Apply the product rule:
[tex] ln(ab) = ln(a) + ln(b) [/tex]
[tex]3 ln(3) + 2ln(x) = ln(27 {x}^{2} ) [/tex]