Respuesta :

Answer:

ln (27 x²)

Step-by-step explanation:

Given in the question an expression

3 ln 3 + 2 ln x

Step1

Apply power rule

[tex]mlnx=lnx^{m}[/tex]

ln 3³ +  ln x²

Step2

Apply multiplication rule

[tex]lnx + lny=ln(xy)[/tex]

ln (3³ . x²)

3³ = 27

so

ln (27x²)

ANSWER

[tex]3 ln(3) + 2ln(x) = ln(27 {x}^{2} ) [/tex]

EXPLANATION

The given logarithmic expression is

[tex]3 ln(3) + 2ln(x) [/tex]

Recall and apply the power rule:

[tex]k \: ln(a) = ln( {a}^{k} ) [/tex]

[tex]3 ln(3) + 2ln(x) = ln( {3}^{3} ) + ln( {x}^{2} ) [/tex]

[tex]3 ln(3) + 2ln(x) = ln(27) + ln( {x}^{2} ) [/tex]

Apply the product rule:

[tex] ln(ab) = ln(a) + ln(b) [/tex]

[tex]3 ln(3) + 2ln(x) = ln(27 {x}^{2} ) [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE