contestada

What is the de Broglie wavelength of an electron that strikes the back of the face of a TV screen at 1/10 the speed of light? _____m

Respuesta :

Answer: [tex]2.42(10)^{-11} m[/tex]

Explanation:

The de Broglie wavelength [tex]\lambda[/tex] is given by the following formula:

[tex]\lambda=\frac{h}{p}[/tex]   (1)

Where:

[tex]h=6.626(10)^{-34}\frac{m^{2}kg}{s}[/tex] is the Planck constant

[tex]p[/tex] is the momentum of the atom, which is given by:

[tex]p=m_{e}v_{e}[/tex]   (2)

Where:

[tex]m_{e}=9.11(10)^{-31}kg[/tex] is the mass of the electron

[tex]v=\frac{1}{10}c[/tex] is the velocity of the electron (we are told it is 1/10 the speed of light [tex]c=3(10)^{8}\frac{m}{s}[/tex])

This means equation (2) can be written as:

[tex]p=m_{e}\frac{1}{10}c[/tex]   (3)

Substituting (3) in (1):

[tex]\lambda=\frac{h}{m_{e}\frac{1}{10}c}[/tex]    (4)

[tex]\lambda=10\frac{h}{m_{e} c}[/tex]    (5)

Now, we only have to find [tex]\lambda[/tex]:

[tex]\lambda=10\frac{6.626(10)^{-34}\frac{m^{2}kg}{s}}{(9.11(10)^{-31}kg)(3(10)^{8}\frac{m}{s})}[/tex]     (6)

Finally:

[tex]\lambda=2.42(10)^{-11} m[/tex]>>> This is the de Broglie wavelength of an electron.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE