What are the vertex and x-intercepts of the graph of the function below?
y = x2 - 4x - 21
A. Vertex: (2, -25); Intercepts: x = 3, -7
B. Vertex: (2, 17); Intercepts: x = -3, 7
C. Vertex: (2, 17); Intercepts: x = 3, -7
D. Vertex: (2, -25); Intercepts: x = -3, 7

Respuesta :

I think is D.vertex(2_25);intercept:x=_3,7

Answer:

Vertex: (2, -25); Intercepts: x = -3, 7

Step-by-step explanation:

[tex]y = x^2 - 4x - 21[/tex]

Lets find out the vertex and the x intercepts

To find out the vertex we use formula

[tex]x=\frac{-b}{2a}[/tex]

The value of a= 1, b=-4. Plug in the values

[tex]x=\frac{-(-4)}{2(1)=2}[/tex]

Substitute x=2 and find out y

[tex]y = 2^2 - 4(2) - 21=-25[/tex]

So vertex (2,-25)

Now we find out x intercepts, replace y with 0 and solve for x

[tex]0 = x^2 - 4x - 21[/tex]

we find out two factors whose product -21 and add upto -4

the factors are -7 and 3

[tex]0 = (x-7)(x+3)[/tex]

[tex]x-7=0, x=7[/tex]

[tex]x+3=0, x=-3[/tex]

x intercepts are -3,7

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE