Let [tex]X[/tex] be the random variable for the time a given person from the population spends sleeping. With [tex]X\sim\mathcal N(6.8,0.4^2)[/tex] we have
[tex]P(X>8)=P\left(\dfrac{X-6.8}{0.4}>\dfrac{8-6.8}{0.4}\right)=P(Z>3)\approx0.0013[/tex]
where [tex]Z\sim\mathcal N(0,1^2)[/tex].
[tex]P(X\le6)=P\left(\dfrac{X-6.8}{0.4}\le\dfrac{6-6.8}{0.4}\right)=P(Z\le-2)\approx0.0228[/tex]
[tex]P(7<X<9)=P\left(\dfrac{7-6.8}{0.4}<\dfrac{X-6.8}{0.4}<\dfrac{9-6.8}{0.4}\right)=P(0.5<Z<5.5)\approx0.3085[/tex]
Rounded to the nearest whole number, that comes out to about 31%.