Respuesta :
Answer:
[tex]\frac{7a^2-63}{a-3}[/tex]
Step-by-step explanation:
So what is the average rate of change? Basically, it's the slope. In fact it's exactly the slope for a linear equation, but how do you find slope?
[tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
Sp we just plug the values in.
[tex]x_1=3\\x_2=a\\y_1=7(3)^2-6=63-6=57\\y_2=7(a)^2-6[/tex]
[tex]\frac{7a^2-6-57}{a-3}=\frac{7a^2-63}{a-3}[/tex]
The average rate of change of [tex]f ( x ) = 7x^2 - 6[/tex] on the interval [tex][ 3 , a ][/tex] is [tex]\frac{7a^{2}-63}{a - 3}[/tex]
Formula for finding the average rate of change is given as:
[tex]\frac{f(b) - f(a)}{b - a}[/tex]
Where,
[tex]a=3[/tex]
[tex]f(a) = 7\times3^2 - 6 = 7\times9 -6 =63 - 6 = 57[/tex]
[tex]b = a[/tex]
[tex]f(b) = 7\times a^{2} -6 = 7a^{2} -6[/tex]
Plug in the values into the formula:
Average rate of change = [tex]\frac{f(b) - f(a)}{b - a} = \frac{(7a^{2}-6)- (57)}{a - 3} = \frac{7a^{2}-6- 57}{a - 3} = \frac{7a^{2}-63}{a - 3}[/tex]
Average rate of change = [tex]\frac{7a^{2}-63}{a - 3}[/tex]
Learn more about average rate of change of a function here:
https://brainly.com/question/17085425