Find the area, in square feet, of a triangle whose base is 42⁄3 feet and whose altitude is 84⁄7 feet. A. 135⁄21 B. 20 C. 40 D. 2610⁄21

Respuesta :

Answer:

Option B. [tex]20\ ft^{2}[/tex]

Step-by-step explanation:

we know that

The area of a triangle is equal to

[tex]A=\frac{1}{2}bh[/tex]

we have

[tex]b=4\frac{2}{3}\ ft[/tex]

[tex]h=8\frac{4}{7}\ ft[/tex]

Convert mixed numbers to an improper fractions

[tex]b=4\frac{2}{3}\ ft=\frac{4*3+2}{3}=\frac{14}{3}\ ft[/tex]

[tex]h=8\frac{4}{7}\ ft=\frac{8*7+4}{7}=\frac{60}{7}\ ft[/tex]

substitute the values

[tex]A=\frac{1}{2}(\frac{14}{3})(\frac{60}{7})\\ \\A=\frac{14*60}{2*3*7}\\ \\A=\frac{840}{42} \\ \\A=20\ ft^{2}[/tex]

Answer: B. 20

Step-by-step explanation:

Hi to answer this question we have to apply the next formula:

Area of a triangle: base x height (altitude) x 1/2

Replacing with the values given:

A =4 2/3 x 8 4/7 x 1/2

A= (4x3+2)/3 x (8x7+4)/7 x 1/2

A = 14/3 x 60/7 x 1/2 = 840/42=20 square feet

So, the correct option is B.20

Feel free to ask for more if needed or if you did not understand something.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE