Use logarithmic differentiation to find the derivative of the function. y = x2cos x Part 1 of 4 Using properties of logarithms, we can rewrite ln y = ln(x2cos x) as

Respuesta :

ANSWER

[tex]{y}^{

'} = 2x \cos(x) - {x}^{2} \sin(x) [/tex]

EXPLANATION

The given function is

[tex]y = {x}^{2} \cos(x) [/tex]

We take natural log of both sides;

[tex] ln(y) = ln({x}^{2} \cos(x) )[/tex]

Recall and use the product rule of logarithms.

[tex] ln(AB) = ln(A ) + ln(B) [/tex]

This implies that:

[tex]ln(y) = ln({x}^{2} ) + ln( \cos(x) )[/tex]

[tex]ln(y) = 2 ln({x} ) + ln( \cos(x) )[/tex]

We now differentiate implicitly to obtain;

[tex] \frac{ {y}^{

'} }{y} = \frac{2}{x} - \frac{ \sin(x) }{ \cos(x) } [/tex]

Multiply through by y,

[tex] {y}^{

'} = y( \frac{2}{x} - \frac{ \sin(x) }{ \cos(x) ) })[/tex]

Substitute y=x²cosx to obtain;

[tex] {y}^{

'} = {x}^{2} \cos(x) ( \frac{2}{x} - \frac{ \sin(x) }{ \cos(x) ) } )[/tex]

Expand:

[tex]{y}^{

'} = 2x \cos(x) - {x}^{2} \sin(x) [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE