Find the limit (Picture Provided)

As long as [tex]g(x)[/tex] (or whichever function appears in the denominator) does not approach 0 as [tex]x\to c[/tex],
[tex]\displaystyle\lim_{x\to c}\frac{f(x)}{g(x)}=\frac{\lim\limits_{x\to c}f(x)}{\lim\limits_{x\to c}g(x)}[/tex]
In this case,
[tex]\displaystyle\lim_{x\to4}\frac gh(x)=\lim_{x\to4}\frac{g(x)}{h(x)}=\frac0{-2}=2[/tex]
so the answer is B.
ANSWER
b. 0
EXPLANATION
We use the property of limits;
[tex]lim_{x\to 4} \frac{g}{h} (x) = lim_{x\to 4} \frac{g(x)}{h(x)}[/tex]
[tex]lim_{x\to 4} \frac{g}{h} (x) = \frac{lim_{x\to 4}g(x)}{lim_{x\to 4}h(x)}[/tex]
Substitute,
[tex]lim_{x\to 4} \frac{g}{h} (x) = \frac{0}{ - 2}[/tex]
Simplify;
[tex]lim_{x\to 4} \frac{g}{h} (x) =0[/tex]