x = -6, y = 6, Now find the hypotenuse:
(-6)² + (6)² = hypotenuse²
36 + 36 = hypotenuse²
2(36) = hypotenuse²
√2(36) = hypotenuse
6√2 = hypotenuse
[tex]sin\ \theta=\dfrac{y}{hypotenuse}=\dfrac{6}{6\sqrt2}=\dfrac{1}{\sqrt2}\cdot \dfrac{\sqrt2}{\sqrt2}=\boxed{\dfrac{\sqrt2}{2}}\\\\\\cos\ \theta=\dfrac{y}{hypotenuse}=\dfrac{-6}{6\sqrt2}=-\dfrac{1}{\sqrt2}\cdot \dfrac{\sqrt2}{\sqrt2}=\boxed{-\dfrac{\sqrt2}{2}}\\\\\\tan\ \theta=\dfrac{y}{x}=\dfrac{-6}{6}=\boxed{-1}\\\\\\csc\ \theta=\dfrac{hypotenuse}{y}=\dfrac{6\sqrt2}{6}=\boxed{\sqrt2}\\\\\\sec\ \theta=\dfrac{hypotenuse}{x}=\dfrac{6\sqrt2}{-6}=\boxed{-\sqrt2}[/tex]
[tex]cot\ \theta=\dfrac{x}{y}=\dfrac{6}{-6}=\boxed{-1}[/tex]