Respuesta :

Answer:

[tex]SU=3.5\ units[/tex]

Step-by-step explanation:

step 1

In the isosceles right triangle PQT

PQ=PT ----> because is an isosceles triangle

Applying the Pythagoras Theorem

we have

[tex]PQ=PT =\sqrt{2}\ units[/tex]

[tex]QT^{2}=PQ^{2} +PT^{2}[/tex]

substitute the values

[tex]QT^{2}=\sqrt{2}^{2} +\sqrt{2}^{2}[/tex]

[tex]QT^{2}=4[/tex]

[tex]QT=2\ units[/tex]

step 2

In the square QRST

[tex]RS=QT=2\ units[/tex]

step 3

In the right triangle RSU

Applying the Pythagoras Theorem

[tex]RU^{2}=RS^{2} +SU^{2}[/tex]

we have

[tex]RU=4\ units[/tex]

[tex]RS=2\ units[/tex]

substitute the values and solve for SU

[tex]4^{2}=2^{2} +SU^{2}[/tex]

[tex]SU^{2}=4^{2}-2^{2}[/tex]

[tex]SU^{2}=12[/tex]

[tex]SU=2\sqrt{3}\ units[/tex]

[tex]SU=3.5\ units[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE