Answer: $1745.82
Step-by-step explanation:
[tex]A=P\bigg(1+\dfrac{r}{n}\bigg)^{n\cdot t}\qquad \text{where:}\\\\\bullet A=\text{Amount accrued (account balance)}\\\bullet P=\text{Principal (amount invested)}\\\bullet r=\text{interest rate (in decimal form)}\\\bullet n=\text{number of times compounded in one year}\\\bullet t=\text{time (number of years)}[/tex]
[tex]\text{The given information is:}\\\bullet A=unknown\\\bullet P=1500\\\bullet r=3.8\% \rightarrow 0.038\\\bullet n=monthly \rightarrow 12\\\bullet t=4\\\\\\A=1500\bigg(1+\dfrac{0.038}{12}\bigg)^{12\times 4}\\\\.\ =1745.82[/tex]