Square Root
Factor the perfect-square trinomial on the left side of the equation. Apply the square root property of equality. (looking for the answer to the second part)

Square Root Factor the perfectsquare trinomial on the left side of the equation Apply the square root property of equality looking for the answer to the second class=

Respuesta :

Answer:

1).[tex](x+\frac{1}{4})^{2}=\frac{4}{9}[/tex]

2).[tex]x+\frac{1}{4}=\pm \frac{2}{3}[/tex]

Step-by-step explanation:

Here the given equation is [tex]x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{4}{9}[/tex]

We have to factor the perfect square trinomial on the left side of the equation

So left side of the equation is [tex]x^{2}+\frac{1}{2}x+\frac{1}{16}[/tex]

= [tex]x^{2}+2\times \frac{1}{4}x+(\frac{1}{4})^{2}[/tex]

[tex]=(x+\frac{1}{4})^{2}[/tex]    since [(a+b)²= a²+b²+2ab]

Therefore the factorial form of the equation will be

[tex](x+\frac{1}{4})^{2}=\frac{4}{9}[/tex]

Now we have to solve the equation by applying square root property

[tex]\sqrt{(x+\frac{1}{4})^{2}}=\sqrt{\frac{4}{9}}[/tex]

[tex]x+\frac{1}{4}=\pm \frac{2}{3}[/tex]

Answer:

1. Perfect square trinomial on left sides is [tex](x+\frac{1}{4})^2=\frac{4}{9}[/tex].

2. The equation after applying the square root property of equality is [tex]x+\frac{1}{4}=\pm \frac{2}{3}[/tex].

Step-by-step explanation:

The given equation is

[tex]x^2+\frac{1}{2}x+\frac{1}{16}=\frac{4}{9}[/tex]

It can be written as

[tex]x^2+\frac{1}{2}x+(\frac{1}{4})^2=\frac{4}{9}[/tex]

Factor the perfect-square trinomial on the left side of the equation.

[tex]x^2+2(\frac{1}{4})x+(\frac{1}{4})^2=\frac{4}{9}[/tex]

[tex](x+\frac{1}{4})^2=\frac{4}{9}[/tex]        [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]

Therefore the required equation is

[tex](x+\frac{1}{4})^2=\frac{4}{9}[/tex]

Taking square root both the sides.

[tex]\sqrt{(x+\frac{1}{4})^2}=\pm\sqrt{\frac{4}{9}}[/tex]

[tex]x+\frac{1}{4}=\pm \frac{2}{3}[/tex]

Therefore the equation after applying the square root property of equality is [tex]x+\frac{1}{4}=\pm \frac{2}{3}[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE