Respuesta :

Answer:

Minimum value of [tex]p=10x+26y[/tex] is 80 at (1.5,2.5)

Step-by-step explanation:

We are given

The objective function is, Minimize [tex]p=10x+26y[/tex]

With the constraints as,

[tex]x+y\leq 6\\5x+y\geq 10\\x+5y\geq 14[/tex]

So, upon plotting the constraints, we see that,

The boundary points of the solution region are,

(1,5), (1.5,2.5) and (4,2).

So, the minimum values at these points are,

Points                              [tex]p=10x+26y[/tex]    

(1,5)                                  [tex]p=10x\times 1+26\times 5[/tex]         i.e. p = 140

(1.5,2.5)                            [tex]p=10\times 1.5+26\times 2.5[/tex]    i.e. p= 80

(4,2)                                 [tex]p=10\times 4+26\times 2[/tex]          i.e. p = 92

Thus, the minimum value of [tex]p=10x+26y[/tex] is 80 at (1.5,2.5).

Ver imagen wagonbelleville
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE