Respuesta :

Answer:

n¹²/m⁵

Step-by-step explanation:

In indices; 1/a = a⁻¹

                 1/a⁻² = a²

So, with this information we can simplify the expression as shown bellow;

(m²n⁻⁵)/(m⁷n⁻¹⁷) = m²n⁻⁵m⁻⁷n¹⁷

                          = m²⁻⁷n⁻⁵⁺¹⁷

                          = m⁻⁵n¹²

                          = (n¹²)/(m⁵)

                           = n¹²/m⁵

The answer is D.

ANSWER

[tex] \frac{ {m}^{2} {n}^{ - 5} }{ {m}^{ 7} {n}^{ - 17} } = \frac{ {n}^{12} }{ {m}^{5} } [/tex]



EXPLANATION


The given expression is

[tex] \frac{ {m}^{2} {n}^{ - 5} }{ {m}^{ 7} {n}^{ - 17} } [/tex]


Recall the following law of exponents,

[tex] \frac{ {a}^{m} }{ {a}^{n} } = {a}^{m - n} [/tex]


We apply this law to obtain:



[tex] \frac{ {m}^{2} {n}^{ - 5} }{ {m}^{ 7} {n}^{ - 17} } = {m}^{2 - 7} {n}^{ - 5 - - 17} [/tex]


This simplifies to,

[tex] \frac{ {m}^{2} {n}^{ - 5} }{ {m}^{ 7} {n}^{ - 17} } = {m}^{ 2- 7} {n}^{ - 5 + 17} [/tex]

[tex] \frac{ {m}^{2} {n}^{ - 5} }{ {m}^{ 7} {n}^{ - 17} } = {m}^{ - 5} {n}^{ 12} [/tex]

Recall again that,


[tex] {a}^{ - m} = \frac{1}{ {a}^{m} } [/tex]

This implies that,


[tex] \frac{ {m}^{2} {n}^{ - 5} }{ {m}^{ 7} {n}^{ - 17} } = \frac{ {n}^{12} }{ {m}^{5} } [/tex]

The correct answer is D.
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE