Explanation
Radius of neon atom : 69 pm = [tex]69\times 10^{-12} m[/tex]
Volume occupied by the one atom:[tex]\frac{4}{3}\pi r^3[/tex]
[tex]=\frac{4}{3}\times 3.14\times(69\times 10^{-12} m)^3=1.37\times 10^{-30} m^3[/tex]
given that [tex]2.69\times 10^{22}[/tex] atoms are present in 1L
1 L = 0.001 [tex]m^3[/tex]
The volume occupied by the [tex]2.69\times 10^{22}[/tex] neon atoms
[tex]2.69\times 10^{22}\times 1.37\times 10^{-30} m^3=3.68\times 10^{-8} m^3[/tex]
Fraction of volume occupied by the neon atom:
[tex]=\frac{3.68\times 10^{-8} m^3}{0.001 m^3}=3.68\times 10^{-11} m^3[/tex]
[tex]3.68\times 10^{-11} m^3<0.001 m^3 = 1L[/tex]
The fraction of of volume occupied by the neon atom is very less than the 1 L which indicates the presence of large amount of empty space between the atoms of the gas.