A ceiling fan with 16-in. blades rotates at 45 rpm.


A) Find the angular speed of the fan in rad/min.


B) Find the linear speed of the tips of the blades in in./min.


* teacher said to not use the formulas (don't use ω=[tex]\frac{θ}{t}[/tex]/[tex]v=\frac{s}{t}[/tex]) and just use conversion method. I'm kind of stumped...

Respuesta :

A. We're told the fan completes 45 full revolutions every minute. One full revolution is [tex]2\pi\,\mathrm{rad}[/tex], so the fan has an angular speed of

[tex]\dfrac{2\pi\,\mathrm{rad}}{1\,\mathrm{rev}}\cdot\dfrac{45\,\mathrm{rev}}{\mathrm{min}}=90\pi\dfrac{\rm{rad}}{\rm{min}}[/tex]

B. Throughout one full revolution of the fan, a point at the tip of one of the fan's blades travels the circumference of a circle with radius 16 in. The circumference is then [tex]2\pi(16\,\mathrm{in})=32\pi\,\mathrm{in}[/tex]. This means the linear speed is

[tex]\dfrac{32\pi\,\mathrm{in}}{1\,\mathrm{rev}}\cdot\dfrac{45\,\mathrm{rev}}{\mathrm{min}}=1440\pi\,\dfrac{\rm{in}}{\rm{min}}[/tex]

(A) "[tex]90\pi \ rad/ min[/tex]" would be the angular speed.

(B) "[tex]1440 \pi \ inch/min[/tex]" would be the linear speed.

As we know that,

The ceiling fan is rotating circular, so

  • [tex]\Theta = 2 \pi[/tex]

(A)

The angular speed will be:

= [tex]2\pi\times 45[/tex]

= [tex]90 \pi \ rad/min[/tex]

(B)

Linear speed,

  • r(w)

The Linear speed will be:

= [tex]16\times 90[/tex]

= [tex]1440 \pi \ inch/min[/tex]

Thus the above solution is right.

Learn more:

https://brainly.com/question/13936055

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE