Respuesta :

Answer:

The measure of arc(ADB) is 270 degree.

Step-by-step explanation:

In circle P, it is given that

[tex]\angle APD=128^{\circ}[/tex]

[tex]\angle APB=90^{\circ}[/tex]

We have to find the measure of arc ADB,

[tex]Arc(ADB)=\angle APD+\angle DPC+\angle CPB[/tex]             .... (1)

We know that the sum of all central angles of a circle is 360.

[tex]\angle APD+\angle DPC+\angle CPB+\angle APB=360^{\circ}[/tex]

[tex]\angle APD+\angle DPC+\angle CPB+90^{\circ}=360^{\circ}[/tex]

[tex]\angle APD+\angle DPC+\angle CPB=360^{\circ}-90^{\circ}[/tex]

[tex]\angle APD+\angle DPC+\angle CPB=270^{\circ}[/tex]                    .... (2)

From (1) and (2), we get

[tex]Arc(ADB)=270^{\circ}[/tex]

Therefore the measure of arc(ADB) is 270 degree.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE