Respuesta :
Answer;
v2 = sqrt(160 m1/m2)
Solution and explanation;
The collision is elastic, which means the total kinetic energy is conserved. Let's call situation 1 before the collision and situation 2 after the collision.
So, initial kinetic energy 1 = 1/2 m1 v1^2 + 1/2 m2 v2^2
= 1/2 m1 × 14^2
= 98 m1
Final kinetic energy = 1/2 m1 v1^2 + 1/2 m2 v2^2
= 1/2 m1 × 6^2 + 1/2 m2 v2^2
= 18 m1 + 1/2 m2 v2^2
Conservation of kinetic energy: Initial kinetic energy = Final kinetic energy
98 m1 = 18 m1 +1/2 m2 v2^2
1/2 m2 v2^2 = 80 m1
v2^2 = 160 m1/m2
v2 = sqrt(160 m1/m2)
Answer:
[tex]v_{2f} = 8 m/s[/tex]
Explanation:
As we know that momentum is always conserved in this type of collision
so we will have
[tex]m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}[/tex]
so here we will have
[tex]m_1(14) + 0 = m_1(-6) + m_2v_{2f}[/tex]
[tex]20 m_1 = m_2v_{2f}[/tex]
also by the coefficient of restitution we know
[tex]v_{2f} - v_{1f} = v_{1i} - v_{2i}[/tex]
so we have
[tex]v_{2f} - (-6) = 14 - 0[/tex]
[tex]v_{2f} = 8 m/s[/tex]