rewire the rational exponent as a radical
[tex](5 \times \frac{3}{4} ) \frac{2}{3} [/tex]
A.
[tex] \sqrt[3]{5^{2} } [/tex]
B.
[tex] \sqrt[12]{5} [/tex]
C.
[tex] \sqrt{5} [/tex]
D.
[tex] \sqrt[3]{5^{4} } [/tex]

Respuesta :

gmany

Answer:

[tex]\large\boxed{\sqrt[3]{\left(\dfrac{15}{4}\right)^2}}[/tex]

Step-by-step explanation:

[tex]a^\frac{n}{m}=\sqrt[m]{a^n}\\---------------------\\\\\left(5\times\dfrac{3}{4}\right)^\frac{2}{3}=\left(\dfrac{5\times3}{4}\right)^\frac{2}{3}=\left(\dfrac{15}{4}\right)^\frac{2}{3}=\sqrt[3]{\left(\dfrac{15}{4}\right)^2}[/tex]

Answer:

[tex]\large\boxed{C.\ \sqrt5}[/tex]

Step-by-step explanation:

[tex]\left(5^\frac{3}{4}\right)^\frac{2}{3}\\\\\text{Use}\ (a^n)^m=a^{nm}\\\\5^{\frac{3}{4}\cdot\frac{2}{3}}=5^{\frac{1}{2}\cdot\frac{1}{1}}=5^\frac{1}{2}=\sqrt[2]5=\sqrt5[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE