Respuesta :

Answer:

20

Step-by-step explanation:

1. ΔKHL~ΔHIK;

2. LH:KH=KH:HI; ⇒ HI=KH²/LH=900/45=20.

The length of HI depends on the other lengths such as KI and LI, which

by Pythagorean theorem gives HI = 20.

Response:

  • HI is 20

Which relationship can be used to find the length of HI?

The given parameters are;

LH = 45

KH = 30

Required:

HI

According to Pythagorean theorem, we have;

KL = √(45² + 30²) = 15·√(13)

  • [tex]\overline{KI}[/tex]² + [tex]\overline{KL}[/tex]² = (LH + HI)²

Which gives;

[tex]\overline{KI}[/tex]² + 15·√(13)² = (45 + HI)²

[tex]\mathbf{\overline{HI}}[/tex]² + [tex]\mathbf{\overline{KH}}[/tex]² = [tex]\overline{KI}[/tex]²

Which gives;

[tex]\overline{HI}[/tex]² + 30² = [tex]\mathbf{\overline{KI}}[/tex]²

[tex]\overline{HI}[/tex]² + 30² + (15·√(13))² = (45 + HI)² = 45² + 2×45×[tex]\overline{HI}[/tex] + [tex]\overline{HI}[/tex]²

30² + 15·√(13)² = 45² + 2×45×[tex]\overline{HI}[/tex]

2×45×[tex]\overline{HI}[/tex] = 30² + 15·√(13)² - 45² = 1800

[tex]\overline{HI} = \mathbf{\dfrac{1800}{2 \times 45} } = 20[/tex]

  • HI = 20

Learn more about Pythagorean theorem here:

https://brainly.com/question/8580952

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE