Respuesta :
Answer:
The simplest Radical = [tex]\sqrt{x^{3} }[/tex]
Step-by-step explanation:
The two terms of the fraction are [tex]x^{\frac{5}{6}}[/tex]⇒numerator
and [tex]x^{\frac{1}{6}}[/tex]⇒denominator
Both of them are same variable x
So we can use the rule of the power:
If we divide to terms have the same base we subtract their powers
[tex]\frac{x^{\frac{5}{6} } }{x^{\frac{1}{6} } }=x^{\frac{5}{6}-\frac{1}{6} }=x^{\frac{4}{6} } =x^{\frac{2}{3} }[/tex]
If the power is in the shape of fraction so the numerator of the fraction represents the radical and the denominator represents the power inside the radical.
[tex]x^{\frac{2}{3} }=\sqrt{x^{3} }[/tex]
Answer: [tex]\bold{\sqrt[3]{x^2} }[/tex]
Step-by-step explanation:
[tex]\dfrac{x^{\frac{5}{6}}}{x^{\frac{1}{6}}}\\\\\\=x^{\frac{5}{6}-\frac{1}{6}}}}\\\\\\=x^{\frac{4}{6}}}}\\\\\\=x^{\frac{2}{3}}}}\\\\=\sqrt[3]{x^2}[/tex]