Respuesta :

Answer:

t1 = a1 = -13/2

t2 =  -10/2

Step-by-step explanation:

Sn = n/2 [2a1 + (n - 1)d]  is the formula for the sum of an arithmetic series

an = a1+ (n-1)d  is the formula for the nth term

d= common difference and a1 is the initial term

a12 = 10

10 = a1 + (12-1)d

10 = a1 +11d

21 = 12/2 (2a1 + (12-1)d)

21 = 6 (2a1 +11d)

Distribute

21 = 12a1 +66d

We have 2 equations and 2 unknowns

10 = a1 +11d

21 = 12a1 +66d

Multiply the first equation by -12

-12 *10 = -12(a1 +11d)

-120 =- 12a1 - 132d

Add this to the second equation

-120 =- 12a1 - 132d

21 = 12a1 +66d

-----------------------

-99 = -66d

Divide by -66

-99/-66 = -66d/-66

3/2 =d

Now we can find a1

10 = a1 +11d

10 = a1 + 11 (3/2)

10 = a1 +33/2

Subtract 33/2

10-33/2 = a1-33/2+33/2

20/2 -33/2 = a1

-13/2 =a1

t1 = a1 = -13/2

t2 = a1+ (2-1)3/2

    = -13/2 + 3/2

    = -10/2

gmany

The formula of a sum of terms of an arithmetic sequence:

[tex]S_n=\dfrac{t_1+t_n}{2}\cdot n[/tex]

We have

[tex]S_{12}=21,\ t_{12}=10,\ n=12[/tex]

Substitute:

[tex]21=\dfrac{t_1+10}{2}\cdot12[/tex]

[tex]21=(t_1+10)\cdot6[/tex]         use the distributive property: a(b + c) = ab + ac

[tex]21=6t_1+60[/tex]          subtract 60 from both sides

[tex]-39=6t_1[/tex]       divide both sides by 6

[tex]t_1=-\dfrac{39}{6}\\\\t_1=-\dfrac{13}{2}[/tex]

The explicit form of an arithmetic sequence:

[tex]t_n=t_1+(n-1)d[/tex]

d - common difference

[tex]d=t_{n+1}-t_n\to 11d=t_{12}-t_1[/tex]

Substitute:

[tex]11d=10-\left(-\dfrac{13}{2}\right)[/tex]

[tex]11d=\dfrac{20}{2}+\dfrac{13}{2}[/tex]

[tex]11d=\dfrac{33}{2}[/tex]        divide both sides by 11

[tex]d=\dfrac{3}{2}[/tex]

[tex]t_2=t_1+d\to t_2=-\dfrac{13}{2}+\dfrac{3}{2}=-\dfrac{10}{2}=-5[/tex]

Answer:

[tex]t_1=-\dfrac{13}{2}\ and\ t_2=-5[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE