25 POINTS. PLEASE HELP

Answer:
t1 = a1 = -13/2
t2 = -10/2
Step-by-step explanation:
Sn = n/2 [2a1 + (n - 1)d] is the formula for the sum of an arithmetic series
an = a1+ (n-1)d is the formula for the nth term
d= common difference and a1 is the initial term
a12 = 10
10 = a1 + (12-1)d
10 = a1 +11d
21 = 12/2 (2a1 + (12-1)d)
21 = 6 (2a1 +11d)
Distribute
21 = 12a1 +66d
We have 2 equations and 2 unknowns
10 = a1 +11d
21 = 12a1 +66d
Multiply the first equation by -12
-12 *10 = -12(a1 +11d)
-120 =- 12a1 - 132d
Add this to the second equation
-120 =- 12a1 - 132d
21 = 12a1 +66d
-----------------------
-99 = -66d
Divide by -66
-99/-66 = -66d/-66
3/2 =d
Now we can find a1
10 = a1 +11d
10 = a1 + 11 (3/2)
10 = a1 +33/2
Subtract 33/2
10-33/2 = a1-33/2+33/2
20/2 -33/2 = a1
-13/2 =a1
t1 = a1 = -13/2
t2 = a1+ (2-1)3/2
= -13/2 + 3/2
= -10/2
The formula of a sum of terms of an arithmetic sequence:
[tex]S_n=\dfrac{t_1+t_n}{2}\cdot n[/tex]
We have
[tex]S_{12}=21,\ t_{12}=10,\ n=12[/tex]
Substitute:
[tex]21=\dfrac{t_1+10}{2}\cdot12[/tex]
[tex]21=(t_1+10)\cdot6[/tex] use the distributive property: a(b + c) = ab + ac
[tex]21=6t_1+60[/tex] subtract 60 from both sides
[tex]-39=6t_1[/tex] divide both sides by 6
[tex]t_1=-\dfrac{39}{6}\\\\t_1=-\dfrac{13}{2}[/tex]
The explicit form of an arithmetic sequence:
[tex]t_n=t_1+(n-1)d[/tex]
d - common difference
[tex]d=t_{n+1}-t_n\to 11d=t_{12}-t_1[/tex]
Substitute:
[tex]11d=10-\left(-\dfrac{13}{2}\right)[/tex]
[tex]11d=\dfrac{20}{2}+\dfrac{13}{2}[/tex]
[tex]11d=\dfrac{33}{2}[/tex] divide both sides by 11
[tex]d=\dfrac{3}{2}[/tex]
[tex]t_2=t_1+d\to t_2=-\dfrac{13}{2}+\dfrac{3}{2}=-\dfrac{10}{2}=-5[/tex]
Answer:
[tex]t_1=-\dfrac{13}{2}\ and\ t_2=-5[/tex]