Find the coordinates of the circumcenter of triangle PQR with vertices P(-2,5), Q(4,1), and R(-2,-3). The coordinates of the circumcenter are ( , ).

Respuesta :

Answer:

? bro theres not even a picture...

Step-by-step explanation:

Coordinates of circumcenter will be [tex](-\frac{1}{3},1)[/tex].

   Property of a circumcenter,

"Distances of all vertices from circumcenter is same"

If A(h, k) is the circumcenter of the triangle PQR,

PA² = QA² = RA²

By using the expression for the distance between two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex],

Distance = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

For PA² = QA²,

[tex](\sqrt{(-2-h)^2+(5-k)^2})^2=(\sqrt{(4-h)^2+(k-1)^2})^2[/tex]

4 + h² + 4h + 25 + k² - 10k = 16 + h² - 8h + k² + 1 - 2k

12h - 8k = -12

3h - 2k = -3 --------(1)

For QA² = RA²,

[tex](\sqrt{(4-h)^2+(1-k)^2})^2=(\sqrt{(-2-h)^2+(-3-k)^2})^2[/tex]

16 + h² - 8h + k² + 1 - 2k = 4 + h² + 4h + k² + 9 + 6k

-12h - 8k = -4

12h + 8k = 4

3h + 2k = 1 ------ (2)

Add equation (1) and (2),

3h - 2k + 3h + 2k = -3 + 1

6h = -2

h = [tex]-\frac{1}{3}[/tex]

From equation (1)

[tex]3(-\frac{1}{3})-2k=-3[/tex]

-2k = -2

k = 1

     Therefore, coordinates of circumcenter will be [tex](-\frac{1}{3},1)[/tex].

Learn more,

https://brainly.com/question/11581885

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE