Respuesta :

Answer:

Given the system of equations:

[tex]2y-2x =12[/tex]              .....[1]

[tex]x^2+y^2=36[/tex]          .....[2]

We can write equation [1] as;

2(y-x) = 12

Divide both sides by 2 we get;

[tex]y-x = 6[/tex]    

or

y = x+6                                        ....[3]

Substitute equation [3] in [2] we get;

[tex]x^2+(x+6)^2=36[/tex]

[tex]x^2+x^2+36+12x=36[/tex]

Subtract 36 from both sides we have;

[tex]x^2+x^2+12x=0[/tex]

Combine like terms;

[tex]2x^2+12x =0[/tex]

or

[tex]2x(x+6)=0[/tex]

By zero product property:

x =0 and x+6 = 0

or

x = 0 and x = -6

now, substitute the given values of x in [3] we have;

for x = 0

y = 0+6 = 6

for x = -6

y = -6 + 6 = 0

Therefore, the solution for the given system of equation is, either (0, 6)  or (-6, 0)





Ver imagen OrethaWilkison

Answer:

A.) (-6,0)

Step-by-step explanation:

It's on edge.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE