Select the correct answer. What are the approximate values of the minimum and maximum points of f(x) = x5 − 10x3 + 9x on [-3,3]? A. maximum point: (–2.4, 37.014) and minimum point: (2.4, –37.014) B. maximum point: (2.4, –37.014) and minimum point: (–2.4, 37.014) C. maximum point: (–1.4, 33.014) and minimum point: (1.4, –33.014) D. maximum point: (–3, 30) and minimum point: (3, –30)

Respuesta :

Take the first derivative to find critical points:

[tex]f(x)=x^5-10x^3+9x\implies f'(x)=5x^4-30x^2+9=0[/tex]

[tex]\implies x^2=3\pm\dfrac6{\sqrt5}\implies x=\pm\sqrt{3\pm\dfrac6{\sqrt5}}[/tex]

or approximately (from least to greatest) -2.4, -0.56, 0.56, 2.4.

We have second derivative

[tex]f''(x)=20x^3-60x[/tex]

and at each of the critical points, we have

[tex]f''(-2.4)\approx-128<0[/tex]

[tex]f''(-0.56)\approx30>0[/tex]

[tex]f''(0.56)\approx-30<0[/tex]

[tex]f''(2.4)\approx128>0[/tex]

The signs of the second derivative at each point indicates a local minima at [tex]x\approx-2.4[/tex] and [tex]x\approx0.56[/tex], and local maxima at [tex]x\approx-0.56[/tex] and [tex]x\approx2.4[/tex]. At these extrema, we have

[tex]f(-2.4)\approx37.014[/tex]

[tex]f(-0.56)\approx-3.34[/tex]

[tex]f(0.56)\approx3.34[/tex]

[tex]f(2.4)\approx-37.014[/tex]

and at the endpoints of the interval, we have

[tex]f(-3)=f(3)=0[/tex]

So the answer is A.

The approximate values of the minimum and maximum points

maximum point: (–2.4, 37.014) and minimum point: (2.4, –37.014).

Approximate values

Given function

[tex]$\mathrm{f}(\mathrm{x})=x^{5}-10 x^{3}+9 x$[/tex]on the interval [-3,3]

A. Maximum point (-2.4,37.014)

Minimum point (2.4,-37.014)

[tex]$f(x)=(-2.4)^{5}-10(-2.4)^{3}+9(-2.4)$[/tex]

[tex]$f(x)=-79.62624+138.24-21.6$[/tex]

[tex]$f(x)=37.014$[/tex]

Put x=2.4 then we get

[tex]&f(x)=(2.4)^{5}-10(2.4)^{3}+9(2.4) \\[/tex]

[tex]&f(x)=79.62624-138.24+21.6 \\[/tex]

[tex]&f(x)=37.014[/tex]

B. Maximum point (2.4,-37.014)

Minimum point (-2.4,37.014)

Put x=2.4. Then we get

f(x)=-37.014

Put x=-2.4 then we get

f(x)=37.014

C. Maximum point $(-1.4,33.014)$

Minimum point $(1.4,-33.014)$

Put x=-1.4 then we get

[tex]&f(x)=(-1.4)^{5}-10(-1.4)^{3}+9(1.4) \\[/tex]

[tex]&f(x)=-38.94[/tex]

Put x =1.4 then we get

f(x) = 38.94

D. Maximum point (-3,30)

Minimum point (3,-30)

f(x) = 38.94

Put [tex]$x=-3$[/tex] then we get

[tex]$f(x)=-243+270-27=0$[/tex]

Hence, from the option [tex]$A, B, C$[/tex] and [tex]D[/tex] we can see only option [tex]$A$[/tex] is the right answer. The approximate values of the minimum point [tex]$(2.4,-37.014)$[/tex]and maximum point [tex]$(-2.4,37.014)$[/tex] of the function [tex]$\mathrm{f}(\mathrm{x})=x^{5}-10 x^{3}+9 x$[/tex] on [tex]$[-3,3]$[/tex].

To learn more about approximate values of the minimum and maximum points

https://brainly.com/question/1616759

#SPJ2

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE