PLEASE ANSWER ASAP! SHOW ALL WORK! WILL GIVE BRAINLIEST!

1) Divide using Long Division (Please show all work)
(x^2 - 13x - 48) ÷ (x + 3)


2) Divide using Long Division (Please show all work)
(3x^3 - x^2 - 7x + 6) ÷ (x + 2)


3) Using Long Division determine whether (x + 2) is a factor of x^3 + 3x^2 - 10x - 24
(Please show all work)

Respuesta :

1) [tex]x^2=x\cdot x[/tex], and [tex]x(x+3)=x^2+3x[/tex]. Subtracting this from the numerator gives a remainder of

[tex](x^2-13x-48)-(x^2+3x)=-16x-48[/tex]

[tex]-16x=-16\cdot x[/tex], and [tex]-16(x+3)=-16x-48[/tex]. Subtracting this from the previous remainder gives a new remainder of

[tex](-16x-48)-(-16x-48)=0[/tex]

This means that

[tex]\dfrac{x^2-13x-48}{x+3}=x-16[/tex]

2) [tex]3x^3=3x^2\cdot x[/tex], and [tex]3x^2(x+2)=3x^3+6x^2[/tex]. Subtracting this from the numerator gives a remainder of

[tex](3x^3-x^2-7x+6)-(3x^3+6x^2)=-7x^2-7x+6[/tex]

[tex]-7x^2=-7x\cdot x[/tex], and [tex]-7x(x+2)=-7x^2-14x[/tex]. Subtracting this from the previous remainder gives a new remainder of

[tex](-7x^2-7x+6)-(-7x^2-14x)=7x+6[/tex]

[tex]7x=7\cdot x[/tex], and [tex]7(x+2)=7x+14[/tex]. Subtracting this from the previous remainder gives a new remainder of

[tex](7x+6)-(7x+14)=-8[/tex]

This means that

[tex]\dfrac{3x^3-x^2-7x+6}{x+2}=3x^2-7x+7-\dfrac8{x+2}[/tex]

3) [tex]x+2[/tex] will be a factor of [tex]x^3+3x^2-10x-24[/tex] if dividing the latter by [tex]x+2[/tex] leaves a remainder of 0.

[tex]x^3=x^2\cdot x[/tex], and [tex]x^2(x+2)=x^3+2x^2[/tex]. Subtracting this from the numerator gives a remainder of

[tex](x^3+3x^2-10x-24)-(x^3+2x^2)=x^2-10x-24[/tex]

[tex]x^2=x\cdot x[/tex], and [tex]x(x+2)=x^2+2x[/tex]. Subtracting this from the previous remainder gives a new remainder of

[tex](x^2-10x-24)-(x^2+2x)=-12x-24[/tex]

[tex]-12x=-12\cdot x[/tex], and [tex]-12(x+2)=-12x-24[/tex]. Subtracting this from the previous remainder gives a new remainder of

[tex](-12x-24)-(-12x-24)=0[/tex]

and since the remainder is 0, [tex]x+2[/tex] is indeed a factor of [tex]x^3+3x^2-10x-24[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE