Respuesta :
Answer:
The correct option is c.
Step-by-step explanation:
We have to find the cube roots of -0.000125.
It can be written as
[tex]\sqrt[3]{-0.000125}[/tex]
[tex]\sqrt[3]{-0.000125}=-\sqrt[3]{0.000125}[/tex]
[tex]\sqrt[3]{-0.000125}=-\sqrt[3]{0.05\times 0.05\times 0.05}[/tex]
[tex]\sqrt[3]{-0.000125}=-\sqrt[3]{(0.05)^3}[/tex]
[tex]\sqrt[3]{-0.000125}=-0.05[/tex]
Therefore option c is correct.
Answer:
[tex]\sqrt[3]{-0.000125}=-0.05[/tex]
Step-by-step explanation:
We are given
[tex]\sqrt[3]{-0.000125}[/tex]
Firstly, we will find factors of -0.000125
we can write as
[tex]-0.000125=(-0.05)\times (-0.05)\times (-0.05)[/tex]
[tex]-0.000125=(-0.05)^3[/tex]
now, we can replace it
[tex]\sqrt[3]{-0.000125}=\sqrt[3]{(-0.05)^3}[/tex]
now, we can simplify it
and we get
[tex]\sqrt[3]{-0.000125}=-0.05[/tex]
So,
answer is
c. -0.05