Respuesta :
Answer:
D quadruple
Explanation:
[tex]E = \frac{1}{2}mv^2\\E'=\frac{1}{2}m(2v)^2=\frac{1}{2}m4 v^2 = 4(\frac{1}{2}mv^2)=4E[/tex]
Answer:
(D) quadruple
Explanation:
[tex]KE_{1} = \frac{1}{2}m v^{2}[/tex] -----equation 1
where;
KE₁ is the initial kinetic energy
m is the gas molecule mass
v is the velocity of gas molecules
⇒ When the velocity of gas molecules is doubled (2v)
[tex]KE_{2} = \frac{1}{2}m (2v)^{2}[/tex]
[tex]KE_{2} = \frac{1}{2}m*4v^{2}[/tex]
[tex]KE_{2} = 4(\frac{1}{2}mv^2)[/tex] -------equation 2
Recall; From equation 1;
[tex]KE_{1} = \frac{1}{2}m v^{2}[/tex]
Substitute in KE₁ in equation 2
KE₂ = 4(KE₁)
Therefore, the kinetic energy will quadruple