Yuii
contestada

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!

Enter a recursive rule for the geometric sequence.

6, − 18, 54, − 162, ...

PLEASE HELP ASAP CORRECT ANSWER ONLY PLEASE Enter a recursive rule for the geometric sequence 6 18 54 162 class=

Respuesta :

Answer:   [tex]\bold{a_1=6,\quad a_n=-3a_{n-1}}[/tex]

Step-by-step explanation:

The recursive rule for a general geometric sequence is:  [tex]a_n=a_{n-1}(r)\quad \text{where}\ a_{n-1}\ \text{is the previous term and r is the ratio}[/tex]

Given the sequence {6. -18, 54, -162, ... }, we can see that

  • [tex]\text{the first term}\ (a_1)\ \text{is 6}[/tex]
  • [tex]\text{the common ratio (r) is:}\ \dfrac{-18}{6}=-3[/tex]

So, the recursive rule is: [tex]a_n=-3a_{n-1}[/tex]

Answer:

The common ratio is       -18 / 6  = -3

 

a1  =  6

an  =  6(-3)n-1    =   explicit rule

 

The recursive rule is

 

an =  an-1 (-3)

 

cool coolcool

Step-by-step explanation:

The common ratio is       -18 / 6  = -3

 

a1  =  6

an  =  6(-3)n-1    =   explicit rule

 

The recursive rule is

 

an =  an-1 (-3)

 

cool coolcool

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE