contestada

Two particles are fixed to an x axis: particle 1 of charge −1.50 ✕ 10−7 c at x = 6.00 cm, and particle 2 of charge +1.50 ✕ 10−7 c at x = 27.0 cm. midway between the particles, what is their net electric field? (express your answer in vector form.) e = −244897.96i correct: your answer is correct. n/c

Respuesta :

Answer : [tex]\underset{E_{R}}{\rightarrow} =-2.44\times10^{5}\ \widehat{i} \ \dfrac{N}{C}[/tex]

Explanation :

Given that,

Charge of particle 1 =  [tex]-1.50\times10^{-7} c[/tex]

Distance x = 6 cm

Charge of particle 2 = [tex]1.50\times10^{-7} c[/tex]

Distance x = 27 cm

Total distance = [tex]\dfrac{6+27}{2}[/tex]

[tex]r = 16.5\ cm[/tex]

Particle 1 is at (6,0) and particle 2 is at (27,0) .

Therefore, midway (16.5, 0)

Now, [tex]r = \dfrac{|6-16.5|}{2} = \dfrac{|27-16.5|}{2} = 10.5\ cm[/tex]

Formula of electric field

[tex]E = \dfrac{1}{4\pi\epsilon_{0}}\times\dfrac{q}{r^{2}}[/tex]

Now, the the electric field due to  particle 1

[tex]\underset{E}{\rightarrow}\ = -\dfrac{9\times10^{9}\times1.50\times10^{-7 }}{10.5}\ \widehat{i}  \dfrac{N}{C}[/tex]

[tex]\underset{E}{\rightarrow} = \dfrac{13.5\times10^{2}}{(10.5\times10^{-2})^{2}}\widehat{i}  \dfrac{N}{C}[/tex]

[tex]\underset{E}{\rightarrow} = -1.22\times10^{5}\ \widehat{i} \ \dfrac{N}{C}[/tex]

Similarly, the electric field due to particle 2

[tex]\underset{E}{\rightarrow} = -1.22\times10^{5}\ \widehat{i} \ \dfrac{N}{C}[/tex]

Resultant Electric field

[tex]\underset{E_{R}}{\rightarrow} = \underset{E_{1}}{\rightarrow} + \underset{E_{2}}{\rightarrow}[/tex]

[tex]\underset{E_{R}}{\rightarrow} = -2.44\times10^{5}\ \widehat{i} \ \dfrac{N}{C}[/tex]

Hence, this is the required answer.






ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE