Respuesta :

Answer:

[tex]\frac{f(x)}{g(x)} = (5-x)[/tex]

Step-by-step explanation:

f(x)=25-x^2 and g(x)=x+5

We need to find (f/g)(x)

(f/g)(x) = f(x)/ g(x)

we divide f(x) by g(x)  and then we simplify

[tex]\frac{f(x)}{g(x)} = \frac{25-x^2}{x+5}[/tex]

WE factor 25-x^2

25-x^2 = 5^2 - x^2 = (5-x)(5+x)

[tex]\frac{f(x)}{g(x)} = \frac{25-x^2}{x+5}[/tex]

[tex]\frac{f(x)}{g(x)} = \frac{(5-x)(5+x)}{x+5}[/tex]

5+x or x+5  are same , so we cancel out x+5

[tex]\frac{f(x)}{g(x)} = (5-x)[/tex]

Answer:

f/g)(x)= -x+5 or 5-x

Step-by-step explanation:

We have been given the functions as:

[tex]f(x)=25-x^{2}[/tex]

[tex]g(x)=x+5[/tex]

We have to find (f/g)(x)

We know that [tex]a^{2} - b^{2} = (a+b)(a-b)[/tex]

So, [tex]25-x^{2}[/tex] = [tex](5+x)(5-x)[/tex]

(f/g)(x) = [tex]\frac{(5+x)(5-x)}{x+5}[/tex]

The (x+5)' are common so they get cancelled out.

Therefore, we get f/g)(x)= -x+5 or 5-x

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE