Respuesta :
Answer:
[tex]\frac{f(x)}{g(x)} = (5-x)[/tex]
Step-by-step explanation:
f(x)=25-x^2 and g(x)=x+5
We need to find (f/g)(x)
(f/g)(x) = f(x)/ g(x)
we divide f(x) by g(x) and then we simplify
[tex]\frac{f(x)}{g(x)} = \frac{25-x^2}{x+5}[/tex]
WE factor 25-x^2
25-x^2 = 5^2 - x^2 = (5-x)(5+x)
[tex]\frac{f(x)}{g(x)} = \frac{25-x^2}{x+5}[/tex]
[tex]\frac{f(x)}{g(x)} = \frac{(5-x)(5+x)}{x+5}[/tex]
5+x or x+5 are same , so we cancel out x+5
[tex]\frac{f(x)}{g(x)} = (5-x)[/tex]
Answer:
f/g)(x)= -x+5 or 5-x
Step-by-step explanation:
We have been given the functions as:
[tex]f(x)=25-x^{2}[/tex]
[tex]g(x)=x+5[/tex]
We have to find (f/g)(x)
We know that [tex]a^{2} - b^{2} = (a+b)(a-b)[/tex]
So, [tex]25-x^{2}[/tex] = [tex](5+x)(5-x)[/tex]
(f/g)(x) = [tex]\frac{(5+x)(5-x)}{x+5}[/tex]
The (x+5)' are common so they get cancelled out.
Therefore, we get f/g)(x)= -x+5 or 5-x