The population of Collin County, which follows the exponential growth model,

increased from 264,036 in 1990 to 491,675 in 2000.
A. Find the exponential rate, k

B. Write the exponential growth.

C. What should the population be in 2012?

Respuesta :

Answer:

(a) k=0.06217

(b) [tex]P=264036e^{0.06217t}[/tex]

(c) 556,755 is the population in 2012

Step-by-step explanation:

Population increased from 264,036 in 1990 to 491,675 in 2000.

Let assume , year 1990 as t=0

When t=0, population P = 264,036

When t=10, population P = 491,675

Exponential growth equation is P=P_0e^(kt)

[tex]P_0[/tex] is the initial population when t=0

So [tex]P_0= 264,036[/tex]

When t=10, population P = 491,675

Plug in all the values and find out k

[tex]491675 =  264036 e^{k*10}[/tex]

Divide both sides by 264036

[tex]\frac{491675}{264036}=e^{k*10}[/tex]

To remove 'e' we take ln on both sides

[tex]ln(\frac{491675}{264036})=lne^{10k}[/tex]

[tex]ln(\frac{491675}{264036})=10kln(e)[/tex]

The value of ln(e) = 1

[tex]ln(\frac{491675}{264036})=10k[/tex]

Divide both sides by 10

k=0.06217

Exponential growth equation is [tex]P=P_0e^{kt}[/tex]

We know  [tex]P_0= 264,036[/tex]

Replace the value of k

[tex]P=264036e^{0.06217t}[/tex]

Now , we find the population in 2012

For year 2012 , t= 12

So we plug on 12 for t  and solve for P

[tex]P=264036e^{0.06217*12}[/tex]

P = 556755.09504

556,755 is the population in 2012



ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE