Given: Line p is parallel to line r.
Prove: ∠1 is supplementary to ∠7.

Statement Reason
1. Line p is parallel to line r. 1.
2. ∠2≅∠7 2.
3. m∠2=m∠7 3.
4. ∠1 and ∠2 form a linear pair. 4.
5. ∠1 is supplementary to ∠2. 5.
6. m∠1+m∠2=180° 6.
7. m∠1+m∠7=180° 7.
8. ∠1 is supplementary to ∠7. 8.

Given Line p is parallel to line r Prove 1 is supplementary to 7 Statement Reason 1 Line p is parallel to line r 1 2 27 2 3 m2m7 3 4 1 and 2 form a linear pair class=

Respuesta :

Answer:


Step-by-step explanation:

What was the answer to this? I am working on the same problem

Answer:

Given,

p and r are parallel lines,

We have to prove that : ∠1 is supplementary to ∠7.

Thus, the column prove would be,

        Statement                                             Reason

1. Line p is parallel to line r.                 1. Given

2. ∠2≅∠7                                             2. Exterior alternate angle theorem,

3. m∠2=m∠7                                        3. Property of congruence,

4. ∠1 and ∠2 form a linear pair.          4. Adjacent angle on straight line,

5. ∠1 is supplementary to ∠2             5. Linear pair postulate

6. m∠1+m∠2=180°                                6. Supplementary angle property

7. m∠1+m∠7=180°                                 7. Substitution property

8. ∠1 is supplementary to ∠7               8. Supplementary angle property

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE