Respuesta :

Answer:

D. 12

Step-by-step explanation:

We have been given a function [tex]f(x)=cx^{2}+30[/tex], where c is a constant and f(3)= 12.

To find f(-3) we will find value of c by substituting value of f(3) in our given function.  

[tex]12=c\times 3^{2}+30[/tex]    

[tex]12=9c+30[/tex]  

[tex]12-30=9c[/tex]

[tex]9c=-18[/tex]

[tex]c=\frac{-18}{9} =-2[/tex]

Upon substituting value of c in our given function we will get our function as [tex] f(x)=-2x^{2}+30[/tex]

Now let us find f(-3) by substituting x=-3 in our function.

[tex]f(-3)=-2(-3)^{2}+30[/tex]    

[tex]f(-3)=-2(9)+30[/tex]

[tex]f(-3)=-18+30[/tex]  

[tex]f(-3)=12[/tex]

Therefore, f(-3) is 12 and option D is the correct choice.      


Answer:

The answer is D)12

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE