Respuesta :

Formula for area of a circle:     A= C^2/ 4    π

                                                  A= 64^2/ 4  π

                                                  A= 4,096/ 4  π

                                                  A=3,216.99087728

                                                  A≈3,216

The area of the clock is about 3,216 inches            

Answer : The area of clock is [tex]316.0inches^2[/tex]

Step-by-step explanation :

As we know that:

Circumference of circle = [tex]2\pi r[/tex]

Area of circle = [tex]\pi r^2[/tex]

Given:

Circumference of circle or clock = 63 inches

First we have to calculate the radius of clock.

[tex]2\pi r=63inches[/tex]

[tex]r=\frac{63inches}{2\pi}[/tex]

[tex]r=(\frac{31.5}{\pi})inches[/tex]

Now we have to determine the area of clock.

Area of circle = [tex]\pi r^2[/tex]

Now put the value of 'r' in this formula, we get the area of clock.

Area of circle = [tex]\pi \times (\frac{31.5}{\pi}inches)^2[/tex]

The value of [tex]\pi=3.14[/tex]

So,

Area of circle = [tex]3.14 \times (\frac{31.5}{3.14}inches)^2[/tex]

Area of circle = [tex]316.0inches^2[/tex]

Therefore, the area of clock is [tex]316.0inches^2[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE