The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (-8, -20) and (5, 2). Substitute:
[tex]m=\dfrac{2-(-20)}{5-(-8)}=\dfrac{22}{13}[/tex]
Answer: The slope is [tex]\dfrac{22}{13}[/tex]
Hello username!
Explanation:
Slope-intercept form: → [tex]y=mx+b[/tex]
m: represents the slope and is constant.
b: represents the y-intercept.
rise/run
[tex]m=\frac{rise}{run}[/tex]
[tex]m=\frac{y^2-y^1}{x^2-x^1}[/tex]
[tex]x^1,y^1=(-8,-20)[/tex]
[tex]x^2,y^2=(5,2)[/tex]
[tex]\frac{2-(-20)=2+20=22}{5-(-8)=5+8=13}=\frac{22}{13}[/tex]
But the slope is 22/13.
Answer: [tex]\boxed{=22/13}[/tex]
Hope this helps!
Thank you :)
-Charlie