Respuesta :

gmany

[tex](\tan x+1)^2+(\tan x-1)^2=2\sec^2x\\\\\text{use}\ \tan x=\dfrac{\sin x}{\cos x}\\\\L_s=\left(\dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\cos x}\right)^2+\left(\dfrac{\sin x}{\cos x}-\dfrac{\cos x}{\cos x}\right)^2\\\\=\left(\dfrac{\sin x+\cos x}{\cos x}\right)^2+\left(\dfrac{\sin x-\cos x}{\cos x}\right)^2\\\\=\dfrac{(\sin x+\cos x)^2}{\cos^2x}+\dfrac{(\sin x-\cos x)^2}{\cos^2x}\\\\\text{use}\ (a\pm b)^2=a^2\pm2ab+b^2[/tex]

[tex]=\dfrac{\sin^2x+2\sin x\cos x+\cos^2}{\cos^2x}+\dfrac{\sin^2x-2\sin x\cos x+\cos^2}{\cos^2x}\\\\=\dfrac{\sin^2x+2\sin x\cos x+\cos^2+\sin^2x-2\sin x\cos x+\cos^2}{\cos^2x}\\\\=\dfrac{2\sin^2x+2\cos^2x}{\cos^2x}=\dfrac{2(\sin^2x+\cos^2x)}{\cos^2x}\\\\\text{use}\ \sin^2x+\cos^2x=1\\\\=\dfrac{2(1)}{\cos^2x}=2\cdot\dfrac{1}{\cos^2x}=2\left(\dfrac{1}{\cos x}\right)^2\\\\\text{use}\ \sec x=\dfrac{1}{\cos x}\\\\=2(\sec^2x)=2\sec^2x=R_s\\\\L_s=R_s\Rightarrow The\ identity[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE