Simplify each expression so that no negative exponents appear in the final result. Assume that all variables represent nonzero numbers.

[tex](\frac{2p}{q^{2}}) ^{3} (\frac{3p^{4}}{q^{-4}})^{-1}[/tex] Multiply the outside exponent into each
[tex](\frac{2p^{3}}{q^{6}} )(\frac{3p^{-4}}{q^{4}} )[/tex] Multiply together
[tex]\frac{6p^{-1}}{q^{10}} = \frac{1}{q^{10}6p^{1}}[/tex]
When you multiply an exponent DIRECTLY into another variable(with an exponent), you multiply the exponents.
For example:
(x²)³ = [tex]x^{6}[/tex]
[tex](x^{4})^{5} = x^{20}[/tex]
When you multiply a variable with an exponent into another variable with an exponent, you add the exponents.
For example:
[tex](x^{2} )(x^{3} )=x^{5}[/tex]
[tex](x^{1} )(x^{3}) = x^{4}[/tex]
First I multiplied the outside exponents into the numerator and the denominator.
When you have a negative exponent, you move it onto the other side of the fraction to make it positive.
For example:
[tex]x^{-2} = \frac{1}{x^{2}}[/tex]
[tex]\frac{x}{y^{-1}} = x(y^1)[/tex]
[tex]\frac{1}{y^{-2}} = y^2[/tex]
Sorry if this is confusing