Respuesta :

[tex](\frac{2p}{q^{2}}) ^{3} (\frac{3p^{4}}{q^{-4}})^{-1}[/tex]  Multiply the outside exponent into each

[tex](\frac{2p^{3}}{q^{6}} )(\frac{3p^{-4}}{q^{4}} )[/tex]  Multiply together

[tex]\frac{6p^{-1}}{q^{10}} = \frac{1}{q^{10}6p^{1}}[/tex]

When you multiply an exponent DIRECTLY into another variable(with an exponent), you multiply the exponents.

For example:

(x²)³ = [tex]x^{6}[/tex]

[tex](x^{4})^{5} = x^{20}[/tex]


When you multiply a variable with an exponent into another variable with an exponent, you add the exponents.

For example:

[tex](x^{2} )(x^{3} )=x^{5}[/tex]

[tex](x^{1} )(x^{3}) = x^{4}[/tex]


First I multiplied the outside exponents into the numerator and the denominator.

When you have a negative exponent, you move it onto the other side of the fraction to make it positive.

For example:

[tex]x^{-2} = \frac{1}{x^{2}}[/tex]

[tex]\frac{x}{y^{-1}} = x(y^1)[/tex]

[tex]\frac{1}{y^{-2}} = y^2[/tex]


Sorry if this is confusing

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE