Respuesta :

Iqta

The stand form of the circle is

[tex](x-h)^{2} + (y-k)^{2} = r^{2}[/tex]

here (h,k) is the center of the cirlce and (x,y) is the point on the circle.

In our case (h,k) is (-2,2)

so our circle equation is

[tex](x--2)^{2} + (y-2)^{2} = r^{2}[/tex].      ----------- (i)

and we can find our r by finding the distance between center and the point given on the circle. lets say we take (1,0) point given on the circle according to our diagram

Then

[tex]r = \sqrt{(-2-1)^{2}+(2-0)^{2}}[/tex]

[tex]r = \sqrt{9+4}[/tex]

[tex]r = \sqrt{13}[/tex]


so by putting the values of r in equation (i)

[tex](x--2)^{2} + (y-2)^{2} = \sqrt{13} ^{2}[/tex]

[tex](x+2)^{2} + (y-2)^{2} = 13[/tex]

Which is our third option.






Answer:

[tex](x+2)^2+(y-2)^2} =13[/tex]

Step-by-step explanation:

We are given a circle with a center at the point (4, -5) and two points on the circle (-5, 0) and (1, 0).

We know that the standard form of equation of a circle is:

[tex]r=\sqrt{(x_1-x)^2+(y_1-y)^2}[/tex]

So putting the given values to get the value of radius (r):

[tex]r=\sqrt{(-2-1)^2+(2-0)^2}[/tex]

[tex]r=\sqrt{13}[/tex]

Substituting the value of radius to get the equation of the circle:

[tex]\sqrt{(x+2)^2+(y-2)^2} =\sqrt{13}[/tex]

Taking square on both the sides:

[tex](x+2)^2+(y-2)^2} =13[/tex]

Therefore, the equation of the given circle is [tex](x+2)^2+(y-2)^2} =13[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE